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Dedicated to Herman J. J. te Riele on the occasion of his retirement from the
CWI in January 2012

This note is written on a recommendation of your friend and former
colleague Jan van de Lune.

1. Computing ζ(s) to arbitrary high precision.

In this note I will present programs to compute ζ(s) and some related
functions that I have implemented, and are now part of the free software
mpmath, a Python library for multiprecision floating-point arithmetic.
mpmath provides an extensive set of transcendental functions, unlim-
ited exponent sizes, complex numbers, interval arithmetic, numerical
integration and differentiation, root-finding, linear algebra, and much
more. It can be used from within Sage, in which case some of the
functions run faster than running them only in mpmath.

The need for implementing these functions must be sought in my
drawings in [1]. The computations needed for these drawings were done
with the commercial software Mathematica. But the computed values
of the zeta function given by Mathematica may not be well supported
by theory. Although the Riemann-Siegel formula is known to be valid
for values off the critical line, there were no published bounds available
for the error, similar to those of Gabcke [7] for the critical line.
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Figure 1

Hence, I obtained these bounds
in [2] and also made a detailed
analysis of how to compute ζ(s)
with a prescribed error ε. This
analysis is contained in [3]. Then
I implemented the function zeta

in Python and it was included in
mpmath.

I also included the function
siegelz. The resulting imple-
mentation is faster than that of
Mathematica. For example, in
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PROGRAMS FOR RIEMANN’S ZETA FUNCTION

Fig. 1 I have represented the quotients of the times spent on com-
puting the values of ζ(1 + i ·100000 ·2n) to 180 decimal digits for n = 0
to n = 30, always using the same laptop, Mathematica version 7.0,
and mpmath version 1.6 from within Sage. For n = 0 the quotient of
the times is 21.3. I have opted for not representing it in Fig. 1. My
implementation goes directly to the computation because the study in
[3] determines exactly what terms to compute and to what degree of
precision to achieve the desired result. It appears that Mathematica
may make some initial or partial computations of the terms and pre-
cision, then store those values to substantially reduce the time spent
on subsequent computations. (On the computation of ζ(1 + 100000i)
Mathematica spent 30.827 seconds and mpmath only 1.448. In the
next computation, for ζ(1 + 200000i) the respective times are 2.852
and 2.647).
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The above example is one
in which Mathematica performs
very well. For a related example
consider Fig. 2. In this case we
compute Z(100000 · 2n) for n = 0
to n = 30, again to 180 digits.
In the first computation mpmath
is much better, after that only
for two values of n are the times
of Mathematica better than those
of mpmath, after which mpmath
outperforms Mathematica.

1.1. Derivatives. I observed that the terms of the Riemann-Siegel
expansion as I have considered them in [2] are not analytic. This gave
me the idea of how to implement also the derivatives of ζ(s). I included
this implementation in the function zeta for the first four derivatives.
The computation of the derivatives is not so well documented as that
of ζ(s); however, I have no doubt that the theoretical foundation can
be given rather easily.

We may observe the consistency of the program for computing the
derivatives with a little program for computing the fourth derivative
Z(4)(a) of the Riemann-Siegel Z(t) function at a = 1234567890:

from mpmath import *

for n in range(13,26):

mp.dps = n

y = siegelz( 1234567890 , derivative = 4 )

print "siegelz ^(iv)( 1234567890 ) = ",y
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We get

siegelz ^(iv)( 1234567890 ) = 5176.534761338

siegelz ^(iv)( 1234567890 ) = 5176.5347613385

siegelz ^(iv)( 1234567890 ) = 5176.53476133847

siegelz ^(iv)( 1234567890 ) = 5176.534761338466

siegelz ^(iv)( 1234567890 ) = 5176.5347613384662

siegelz ^(iv)( 1234567890 ) = 5176.53476133846623

siegelz ^(iv)( 1234567890 ) = 5176.534761338466232

siegelz ^(iv)( 1234567890 ) = 5176.5347613384662324

siegelz ^(iv)( 1234567890 ) = 5176.5347613384662324

siegelz ^(iv)( 1234567890 ) = 5176.534761338466232399

siegelz ^(iv)( 1234567890 ) = 5176.534761338466232399

siegelz ^(iv)( 1234567890 ) = 5176.53476133846623239898

siegelz ^(iv)( 1234567890 ) = 5176.534761338466232398981

Just observe the perfect rounding of the results. (Mathematica in this
case, after some warnings about overflow in its computation, gives an
erroneous value with real and imaginary parts of the order of 102226.)

The computation of the first four derivatives of ζ(s) is implemented
as zeta(s,derivative = m).

2. Zeros of zeta.

Some years ago Fredrik Johansson, the author of mpmath asked me
for a program to compute zeros of zeta. This has not been implemented
before (Mathematica includes a function ZetaZero[n] but it only gives
numerical values for 1 ≤ n ≤ 107).

To explain the procedure we need some definitions and facts. What is
not explained here can be found in the references Turing [18], Lehman
[12], Brent [4], Brent, van de Lune, te Riele, and Winter [5], van de
Lune and te Riele [10], van de Lune, te Riele and Winter [11], Trudgian
[17] and Edwards [6].

As is well known ζ(1
2

+ it) = e−iϑ(t)Z(t), where Z(t) and ϑ(t) are
real functions. For k ≥ −1 the Gram point gk is the solution of the
equation ϑ(gk) = kπ with gk > 7. mpmath has implemented the func-
tion ϑ as siegeltheta and gk as grampoint allowing for arbitrary real
arguments.

The Gram point gk is called good if (−1)kZ(gk) > 0; otherwise, it is
called bad.

The interval (gk, gk+1] is called a Gram interval. “Gram’s law” is the
observation that Z(t) usually changes sign in each Gram interval, but
this “law” has many exceptions.

A Rosser block of length k is an interval Bj = (gj, gj+k] such that gj
and gj+k are good Gram points and gj+1, . . . , gj+k−1 are bad points.
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The definition implies that in a Rosser block of length k ≥ 2 there are
at least k − 2 zeros of Z(t). ( There may be “two missing.” )

The Rosser block Bj of length k satisfies “Rosser’s rule” if it contains
at least k zeros of Z(t). Although Rosser’s rule fails infinitely often,
it is very useful. For example, the first exception to Rosser’s rule is
B13 999 525 of length 2.

Let N(T ) denote the number of zeros ( counted according to their
multiplicities ) of ζ(s) in the region 0 < Im s ≤ T , and S(t) =
π−1 arg ζ(1

2
+ it) adequately defined ( see Titchmarsh [16, section 9.3] ).

We have also the relation

(1) S(t) = N(t)− 1− 1

π
ϑ(t).

Gram’s law holds in regions where |S(t)| < 1, Rosser’s rule holds in
regions where |S(t)| < 2.

The general strategy of our program zetazero is to locate a block
of Gram intervals B for which we know the exact number of zeros, and
containing the zero we are looking for. For this we use the following
facts.

At a Gram point gk we have S(gk) = N(gk) − k − 1. If S(gk) = 0
we may say that for (g−1, gk] we have one zero for each Gram interval.
This is what ( in mean ) we may expect.

When S(gp) = a > 0 we may say that a zeros corresponding to
Gram intervals at the right of gp have moved to the left. Analogously
S(gn) = b < 0 signifies that b zeros corresponding to Gram intervals to
the left of gn have moved to the right.

Our main tool will be a theorem that is the result of the work of
Turing, Lehman and Brent. We quote the final form given by Brent:
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Theorem 2.1. If K consecutive Rosser blocks with union (gn, gp] sat-
isfy Rosser’s rule, where

(2) K ≥ 0.0061 log2 gp + 0.08 log gp,

then N(gn) ≤ n+ 1, and N(gp) ≥ p+ 1.

Trudgian [17] proves that the Theorem is true also if we replace (2)
by

(3) K ≥ 0.0031 log2 gp + 0.11 log gp.

( Some time ago Herman drew my attention to this ).

We see that the interval of the Theorem does not have fewer zeros
than its length indicates.

If we had two consecutive intervals (gn, gp] and (gp, gq] to which the
above Theorem applies, it would be certain that N(gp) = p + 1 or
equivalently S(gp) = 0. This is a key point for us.

The program finds an interval (g`, gm] with S(g`) = S(gm) = 0
and containing our zero. Our zero γn is associated with the inter-
val (gn−2, gn−1] so that it will be zero number n − ` + 1 contained in
the interval (g`, gm].

To obtain our interval (g`, gm] we follow a different path when n <
400 000 000 or when n ≥ 400 000 000. In the first case we benefit from
the work done in [4], [5], [10], [11] and [9]. These authors have obtained
a list of all Rosser exceptions for n < 400 000 000. I have written it in
our program as a list ROSSER EXCEPTIONS some of whose terms are

. . .

[201184290, 201184293], ’3(00)’,

[201685414, 201685418], ’(00)22’,

[202762875, 202762878], ’3(00)’,

[202860957, 202860960], ’3(00)’,

. . .

For example, the second line means the following: The pattern (00)22
signifies that we have four Gram intervals: the first and second with-
out zeros, the third and fourth with two zeros each. The notation
(00) means here that the first two Gram intervals constitute a Rosser
block. This Rosser block is a Rosser exception since it has no zeros in-
stead of at least two. The first [201685414, 201685418] says that these
four Gram intervals form the interval (g201685414, g201685418]. Hence the
Rosser exception here is the block B201685414 of length two.
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We know also that S(g201685414) = S(g201685418) = 0.

Hence when n < 400 000 000 we search in the list of Rosser excep-
tions. If we find in the list [a, b] with a ≤ n− 2 < n− 1 ≤ b we know
that the interval (ga, gb] contains b− a zeros of which the (n− a− 1)-st
is the one we are searching for.

When n < 400 000 000 and is not in the list of Rosser exceptions,
then the interval (gn−2, gn−1] will be contained in a good Rosser block
(gr, gs], and our zero will be the (n− r− 1)-th contained in the Rosser
block (gr, gs] that contains s− r zeros.

When n ≥ 400 000 000 we find ( applying (2) or (3) ) the number nb
of good Rosser blocks satisfying Theorem 2.1.

We search starting from n− 1 to the right to find 2nb adjacent good
Rosser blocks to apply the Theorem, and starting from n − 2 to the
left to find 2nb adjacent good Rosser blocks to apply the Theorem. We
will have the situation of the following figure.

By the Theorem we will know that N(gr) ≥ r+1 and N(gs) ≤ s+1.
If we find at least s− r zeros in the interval (gr, gs] we will have

(4) s+ 1 = (r + 1) + (s− r) ≤ N(gr) + s− r ≤ N(gs) ≤ s+ 1

so that we will have N(gs) = s+ 1 and then

(5) r + 1 ≤ N(gr) ≤ N(gs)− (s− r) = s+ 1− (s− r) = r + 1

so that also N(gr) = r + 1.
Hence, if we can separate s− r zeros in (gr, gs] our zero will be zero

number n− r − 1 in the block (gr, gs] that contain s− r zeros.

But it may be that the interval (gr, gs] contains an exception to
Rosser’s rule, and this interval does not contain s − r zeros. In this
case we can obtain our zero as the n − q − 1-th zero included in the
block (gq, gt] that will contain t− q zeros.
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Once separated, the zero can be computed to high precision. The
program has an option ’info’. If we set ’info = True’ then the program
writes the pattern of zeros of the Rosser Block contained in the interval
(g`, gm] used to separate the zeros.

Easier than the computation of the zero is counting the number of
zeros below a given T . Hence, in mpmath, besides zetazero, we have
implemented also the function N(T ) called nzeros and S(T ) called
backlunds.

3. Examples of use of the functions.

We will check some of the classical results. For example, Brent [4]
says, there are precisely 75 000 000 zeros with 0 < t < 32 585 736.4.

from mpmath import *

print nzeros(32585736.4)

gives us instantly the answer 75000000.
The largest value of S(t) cited in [11] is S(t) = 2.313651 associated

with the Rosser block B1 333 195 692 of length 2. The maximum of S(t)
is always situated at the height of a zero of zeta, since at these points
S(t) increases just by 1. Hence ( after some trials ) we compute

from mpmath import *

mp.pretty = True

mp.dps = 30

zetazero(1333195695 ,info=True)

to get the interesting answer

((0.5 + 487931556.151002430424248648808j),

[1333195688, 1333195702], 6, ’(1)(1)(1)(3)(00)(01112)(1)(1)(1)’)

Then we compute S(t) just after the zero

backlunds(mpf('487931556.151002430424248648809 '))

and we get the value

S(t) = 2.31365131098453554921139397092

Gourdon [8] has been very useful in the composition of the program
zetazero. In his paper we found many things to check our program.
For example, he says: One Gram interval has been found containing
5 zeros of the Zeta function (at index 3 680 295 786 520). We tried to
confirm this with the following little program:
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from mpmath import *

from timeit import default_timer as clock

mp.siegelz = memoize(mp.siegelz)

mp.pretty = True

M=3680295786520

mp.dps=25

for n in range(0,10):

M=3680295786520+n

time0=clock ()

y = zetazero(M, info = True)

time1=clock ()

print 'zero number ', M, ' is equal to ', y

print 'computed in time ', round(time1 -time0 ,3)

from which we get the result:

zero number 3680295786520 is equal to

((0.5 + 935203331168.8441852494293j),

[3680295786518 , 3680295786523], 1, '(00)(5)(00)')
computed in time 467.768

zero number 3680295786521 is equal to

((0.5 + 935203331168.890443154703j),

[3680295786518 , 3680295786523], 2, '(00)(5)(00)')
computed in time 88.083

zero number 3680295786522 is equal to

((0.5 + 935203331168.942043993996j),

[3680295786518 , 3680295786523], 3, '(00)(5)(00)')
computed in time 464.087

zero number 3680295786523 is equal to

((0.5 + 935203331169.0406385758137j),

[3680295786518 , 3680295786523], 4, '(00)(5)(00)')
computed in time 92.74

zero number 3680295786524 is equal to

((0.5 + 935203331169.0677885971269j),

[3680295786518 , 3680295786523], 5, '(00)(5)(00)')
computed in time 104.108

zero number 3680295786525 is equal to

((0.5 + 935203331169.6059878126427j),

[3680295786518 , 3680295786524], 6, '(00)(5)(00)(1)')
computed in time 141.907

zero number 3680295786526 is equal to

((0.5 + 935203331169.8976900813452j),

[3680295786518 , 3680295786525], 7, '(00)(5)(00)(1)(1)')
computed in time 142.386

zero number 3680295786527 is equal to

((0.5 + 935203331170.222881423561j),

[3680295786518 , 3680295786526], 8, '(00)(5)(00)(1)(1)(1)')
computed in time 154.217

zero number 3680295786528 is equal to

((0.5 + 935203331170.3511020085905j),

[3680295786518 , 3680295786529], 9, '(00)(5)(00)(1)(1)(1)(210)')
computed in time 162.575

zero number 3680295786529 is equal to

((0.5 + 935203331170.4727708394046j),

[3680295786518 , 3680295786529], 10, '(00)(5)(00)(1)(1)(1)(210)')
computed in time 155.854
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Hence, indeed the Gram interval (g3680295786520, g3680295786521] contains
the five zeros with indices 3680295786520–3680295786524.

One of the difficulties for a program to compute zeros of zeta is the
fact that there are some very close zeros. Gourdon [8, p. 24] contains
a table with the closest zeros found by him. There are some surprising
questions about the data given by Gourdon. This happens in all lines
of his table, but we explain only the case of the second line where we
found the minimal reported value of γn+1 − γn.

δn = 0.00007195, γn+1 − γn = 0.00001703,

γn = 2124447368584.39307, n = 8637740722916, εn = 5.59 · 10−8.

To check these entries from Gourdon we compute several zeros around
this point:

import mpmath

from mpmath import *

from timeit import default_timer as clock

mp.siegelz = memoize(mp.siegelz)

mp.pretty = True

M = 8637740722916

print "COMPUTING THE TWO NEAREST ZEROS GIVEN BY GOURDON"

mp.dps=32

for n in range(M,M+4):

time0 = clock ()

y = zetazero(n, info = True)

time1 = clock ()

print "zero number ", n, " is equal to ", y

print 'computed in time ', round(time1 -time0 ,3)

and get

COMPUTING THE TWO NEAREST ZEROS GIVEN BY GOURDON

zero number 8637740722916 is equal to

((0.5 + 2124447368583.9851758233873482911j),

[8637740722914 , 8637740722917], 1, '(1)(02)')
computed in time 150.798

zero number 8637740722917 is equal to

((0.5 + 2124447368584.3929646615152911269j),

[8637740722909 , 8637740722925], 7,

'(1)(1)(1)(1)(1)(1)(02)(1)(02)(1)(1)(20)(1)')
computed in time 557.065

zero number 8637740722918 is equal to

((0.5 + 2124447368584.3929817060386050128j),

[8637740722909 , 8637740722925], 8,

'(1)(1)(1)(1)(1)(1)(02)(1)(02)(1)(1)(20)(1)')
computed in time 257.125

zero number 8637740722919 is equal to

((0.5 + 2124447368584.6322042827561081105j),

[8637740722915 , 8637740722918], 3, '(02)(1)')
computed in time 79.513
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(Observe that the timings depend very much on the zeros. Also the
memoized function (see program) simplifies the task of computing a
second near zero). In fact we find two very close zeros here.

δ = 0.0000720136476678, γn+1 − γn = 0.0000170445233139,

γ = 2124447368584.3929646615152911269, n = 8637740722917

We see that Gourdon gives a different value of n with a difference of
one unit. Gourdon’s value of γn has an error of 0.0001053 . . . . Hence
it is somewhat surprising that the value of the difference γn+1 − γn is
given only with an error 1.45× 10−8. These discrepancies occur in all
examples in his table.

As a final challenge consider the computation of zero number 1016.

from mpmath import *

from timeit import default_timer as clock

n = 10**16

mp.dps=33

time0 = clock ()

y1,y2,y3 ,y4 = zetazero(n, info = True)

time1 = clock ()

print "Zero number ", n, " is the ", y3, "-th"

print "of the block ", y2

print "with zero pattern ", y4

print "its value is ", y1

print 'computed in time ', round(time1 -time0 ,3)

we get

Zero number 10000000000000000 is the 1 -th

of the block [9999999999999998 , 10000000000000001]

with zero pattern (210)

its value is (0.5 + 1941393531395154.71128091138831081j)

computed in time 16885.63

The time is equal to 4 hours and 42 minutes.
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